ERASMUS+ WEB-TECHNOLOGIES

Enriching lives, opening minds

ES6 OOP YAROSHEVICH

Andrey Olegovich

WWW.YAROSHEVICH.com
ao@asp.net.by
+375 29 254-07-92

http://www.yaroshevich.com/

Thinks out loud

This is how Heidegger
read his lectures —

here is a fragment Martin'Heldegger
86: 1889 — 1976

https://youtu.be/VZtXKJU7E9s?t=3516

And Prof. Mc. Key from
Cambridge too

Ed Sheeran -
Thinking Out Loud

https://www.youtube.com/watch?v=Ip-EO5160KA

Prof. Mc Key
1967 - 2016

https://www.youtube.com/watch?v=BCiZcOn6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6

https://www.youtube.com/watch?v=lp-EO5I60KA
https://youtu.be/VZtXKJU7E9s?t=3516
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6

Old teaching method

\

If someone's
head doesn't
understand
syllogisms,

It understands
a stick

Theé)dor Mommsen
(1817-1903)

1902 Nobel Prize in Literature for "A History of Rome"

It must be said that it was effective, children showed good results, but its
disadvantages outweighed its benefits, because corporal punishment
humiliates human dignity, so by the middle of the 20th century it was

completely abandoned.

OOP in Ecma6 (JavaScript)

Javascript » 1995: “Mocha” project at Netscape

On March 24, 2014, Mozilla made
the decision to appoint Eich as
CEO of Mozilla Corporation.

After 11 days as CEO, Eich
resigned on April 3, 2014, and left
Mozilla over his opposition to

/h same-sex marriage.

JavaScript was first created by Brendan Eich at Netscape
In 1995; it was nicknamed Mocha during development,
and ultimately named JavaScript to piggyback on the
popularity of Java (another programming
language).

Brendan Eich on Javascript

JS had to “look like Java” only less so, be

Java’s dumb kid brother or boy-hostage
sidekick.

Plus, | had to be done in ten days or
something worse than JS would have
happened.

—Brendan Eich on Javascript

>Javascript takes off, included in Microsoft’s |E
At first it was a simplified version of Java

(«S’tﬂ 03’50
JAVASCRIPT ““ HAMSTER
¢

1996: submitted to Ecma as standard

today
» Java alive and well server-side
» but JS dominates client-side

» making inroads server-side too
(eg, node.js)

var MAX = 10;
var line = function (i, x) {
var L =1 + " times " + X
+* 15 " ¢ (i % x);

Syntax } return 1;

var table = function (x) {
for (var i = 1; i <= MAX; i +=1) {
console.log(line(i, x));

statements like Java o
. . . // display times table for 3
» while, for, if, switch, table(3);
try/catch, return, brealk, e
throw 2 times 3 is 6
3 times 3 1s 9
4 times 3 1s 12
5 times 3 1is 15
Comments 6 times 3 is 18
7 times 3 1s 21
» use //, avoid /**/ 8 times 3 is 24
O times 3 1s 27

10 times 3 1s 30

undefined

> |

JavaScript

Introdoction
to

Ecmascripté

https://www.youtube.com/watch?v=tt1SkTpHUUU

Smalyuk Antonov Fedorovich

Classes

As for
classes, in
Ecma 6 the
syntax has
become very
similar to
Java syntax
(C++ and
C#), which is
good

Java syntax

class ACat {

string name;

public ACat(n){
this.name=n;

}

}
ACat mycat=

new ACat(“Barsik");

class ACat {
constructor(n) {
this.name = n; /[l property
}

}

mycat = new ACat("Barsik");

Functions

class Cat {
constructor(n) {
this.name = n;

}

Say() {
return "meou"”;

}
}

var myCat = new Cat("Barsik");

document.getElementByld("demo").innerHTML ="My cat says "+ myCat.Say()+ "!"

Class Inheritance

<!'DOCTYPE html> ~)
<html> My pet says Miou !
To create a class inheritance, <body>
use the extends keyword. <p id="demo"></p>
<script>
A class created with a class clas; Aﬁt{{
. . . . ay
inheritance inherits all the alert("No");
methods from another class: }
}
class ACat extends APet {
Say() {
Example return "Miou”;
Create a class named “ACat" }
which will inherit the methods }

from the “APet" class:
var myPet = new ACat("Barsik");

document.getElementById(“demo”).innerHTML =
"My pet says " + myPet.Say()+ " I"

</script>
</body>
</html>

Polymorphism

What is Polymorphism?

Polymorphism is one of the core concepts of object-oriented
programming languages
where poly means many and morphism means transforming one form

[]
into another.
Major Worker “z “
&
{
- e Female Alate
Media Worker %g i R} / (Unmated Queen)
§l ‘ i Minor Worker .: - ', - .

Polymorphism in Biology

Male Alate

Minim Worker
(Nanite)

Polymorphism

Bimorphism

Polymorphism
means the same
function with
different signatures
is called many
times.

function WashDishes()

Men's version

Female version
wet with water

function
SaturdayRest()

male version
and
female version

Features of Polymorphism:

Programmers can use the same method name repeatedly.

Polymorphism has the effect of reducing the number of
functionalities that can be paired together.

he super task of polymorphism is
to establish joint actions

function WashDishes() APerson

We create a class

APerson, WashDishes(){ WashDishes(){

which inherits

dry wet

classes
defining a man and } ~
a woman =
AMan and AWomen AWoman AMan

. extends extends
respectively. o APerson APerson
| have a habit of adding the
letter 'A' - APerson —
to classes

| create myself to remember
that it is my class.

ira= new ivan= new
AWoman()|| AMan()

W

<script>
class APerson {
WashDishes() {
return 'dry and wet’;

}
}

class AWomen extends APerson

{
WashDishes() {

return 'wet';

}
}

class AMan extends APerson {
WashDishes() {
return 'dry’;
}
}

single= new APerson();
document.write(" "+ single.WashDishes());
//wet & dry

wet & dry

women = new AWomen(); APerson
man = new AMan();

var family = [women, man];
for(i=0;i<2;i++)
{
document.write(" "+ i
family[i].WashDishes()); wet ry
}

AWoman AMan
//only wet or dry extends extends

</script> APerson APerson

<script>
class APerson {
WashDishes() {
return 'dry and wet'; wet&dry
}

}

class AWomen {
WashDishes() {
return 'wet'; wet

}
}

class AMan {
WashDishes() {
return 'dry’;
} AMan

}

women = new AWomen();
man = new AMan();

var family = [women,man];
for(i=0;i<2;i++)

{

document.write(i+". "+

APerson

dry

family[i].WashDishes()+"
");
}

</script>

function WashDishes()
WashDishes(){

WashDishes(){
dry

/W]

Classes and objects

1. Class is not a real-world entity.

It is just a template

or blueprint

or prototype

from which objects are created.
2. Class does not occupy memory.

1. Object is a real-world entity.
2. The object takes up memory.

classes

objects

AWoman

.
o

AWoman
ira= new

AWoman()

Ivan= new
AMan()

Class and Objects

class AWomen {
constructor(name, gender, age, o)
{
this.name=name;
this.gender=gender;
this.age=age;
this.occupation=o;
}
}

jane =

“ hew AWomen("Jane","female",19,"Student");

e

document.write("Name: "+ jane.name +"
"+
"Gender: "+ jane.gender+"
"+
"Age: "+ jane.age+"
"+
"Gender: "+ jane.occupation+"
");

AWoman

To describe a Woman: name, gender,
age, occupation, ...

A woman can do: eat, drink, sleep, walk, ...

Real world objects

object

&

N

Jane
female
19
Student

object

&

Emma
female
45

Doctor

Ann
female

30
Engineer

/

Die Bremer Stadt Musikanten

Example.

You need to write a
program that simulates the
actions of the Bremen Town
Musicians.

The animals must scare the robbers -
in the

excerpt https://www.youtube.com/
watch?v=8xXiLfSjT9w&t=569s - they
use a clever trick - for example, a cat
shows its face, and the voice is
provided by a dog — “Woof”.

It seems the cat is talking "woof-
woof".

https://www.youtube.com/watch?v=8xXiLfSjT9w&t=569s

The incomprehensible causes horror

The robbers cannot explain what
they saw - because they didn't
graduate from universities, and
think in standards (poorly).

The mystical explanation —
"Evil spirits" —

is the only thing that comes to
their minds.

They run.

The key to success is good interaction

If a cat, a dog, a rooster, a
donkey acted alone (like a
crowd) - they would not have
success.

But the thoughtful joint action
described above brings
SUCCess.

Nobody is afraid of a cat and a
rooster

S. Lemm uses this technique

Lemm uses this technique in his novel Solaris.

The appearance of creatures ("guests") of an
incomprehensible nature on a space station
causes great fear. Because the nature of the
creatures - the woman, the little monster - is
incomprehensible: they could be called
phantoms if they were not entirely material.

Still from Tarkovsky's film "Solaris"

In another Lem novel, "The Inquest," corpses
systematically disappear in a morgue in a rural
hospital in the outskirts of London. The
strangest, most inexplicable and terrifying
thing is that a small kitten is always found -
and this kitten is more frightening than the
monster.

>

/; Sledztwo

The incomprehensible is frightening

So the thoughtful joint action described above
brings success.

The joint action of different objects is implemented
using the mechanism of polymorphism
(not only in programming,

but also in an anthill,

a beehive,

in the army,

at an enterprise).

If a cat, a dog, a rooster, a donkey acted alone (like a
crowd) - they would not have success.

But the thoughtful joint action described above
brings success.

In my opinion,
with the help of
this task you
can feel what
polymorphism
(and function
reloading) is,
and understand
this mechanism
at a deep
(essential)
level.

class AHero
AHero {Say()}

!ﬂhminal

{ virtual public void

nnss ¢
{say()} { H } oo Saﬂi}
ia-ia ku-ka-re-ku

class AAss : AAnimal {

}

override public void Say() { Console.WriteLine("Ii-aa"); }

imal

class ACock :

AAnimal

Say(){Console.WriteLine("Hi"); } }
: AHero { }

class AAnimal

Hero

Die Gebrudér
Grimm

HI at says rl'|1 au— mlw

—ka—-re—ku

Hello

5 miau—miau

{ override public void Say() { Console.WriteLine("ku-ka-re-ku"); } 1}

class ADieBremenStadtMusicanten{

static void Main(string[] args){ ah[@]
ACst cat = new ACSEQ)3 ahL1]

AAss ass = new AAss(); ah[2] ass;
ah[3]= ck;

ah[4] - |
int j;

AHero[] ah = new AHero[5]; intk=03

Console. Background[olur
while (k<5) {

Console.Write("
= < 4?2 1 9;

ah[7]. EOR }

for (int i =@; 1 < 5; i++) {
Cunsole wrlte(

"+ah[i].GetType().Name+ " says ");
ConsoleColor.Blue;

"+ERIEIMGetType () .Name+" says "

Let's create classes for a cat and a dog in ES6
(Javascript)

class ACat { class ADog {
Say() { Say() {
return "Miow": return “Woof";
! }

!]

let's add a type property that returns the
class type

class ACat { class ADog {
Say() { Say() {
return "Miow"; return “Woof";
] }
get type()}{ get type(){
return “Cat”; return “Cat”;
] }

J

_et's create classes for a Roster and a Donkey
in ES6 (Javascript)

class ARooster { class ADonkey {

Say() { Say() {
return return “Hee-haw";
“Cock-a-doodle-do"; }

} get type(){

get type(){ return “Donkey”;
return “Rooster”; }

}

Adoha Sk | mim e

}

for(var i=0; i<bremen.length; i++) { alert(bremen[i].cnam + " says " + bremen([i].Say()); }

Let's unite animals into one structure

bm=[new ADonkey(), new ADog(), new ACat(), new ARooster];
for(var i=0; i<bm.length; i++)
{
alert(bmli].type + " says " + bm[i].Say());
}

Each of our animals says what it should say.
But we need them to say other people's lines.
This can be done like this

for(var i=0; i<bm.length; i++)
{
k=i+1;
j=k<bm.length?k:0;
document.write(bm[i].type + " says " + bm[j].Say());

}

bm=[new ADonkey(), new ADog(), new ACat(), new ARooster()];

class ACat { class ARooster { o :
say() { Say() { for(var i=0; i<bm.length; i++)
return "Miow"; return "Cock-a-doodle-do"; { _ _ :
} } document.write(bmli].type + " says " + bm[i].Say()+"
");
get type(){ get type() }
return "Cat"; return "Rooster";
}) for(var i=0; i<bm.length; i++)
} } o
k=i+1;
j=k<bm.length?k:0;
class ADog { class ADonkey { document.write(bmli].type + " says" +
Say() { Say() { bm(j].Say()+"
");
return "Woof"; return "Hee-haw"; i
} i Donkey says Woof
get type(){ get type(){ Dog says Miow
} return "Dog’; } return "Donkey"; Cat says Cock-a-doodle-do

Rooster says Hee-haw

} }

JS Output

From your JavaScript studies in previous courses, you used the alert()
popup function

alert(" "+ family[i].WashDishes());

The examples in this lecture used the document.write construct to
output text to the end of an HTML page.

document.write(" "+ family[i]. WashDishes());

<!DOCTYPE html>

<html lang="en"> guerySelector
<head> document.querySelector
<title>Count</title> www.asp.net.by/Projects/1/1.1.querySelector.htm
<script>
let counter = 0O;
function count () {
counter++;
document.querySelector ('hl') .innerHTML = counter

//alert (counter) ;
}

</script>
</head>
<body>

<hl>Hello!</hl>

<button onclick="count () ">Count</button>
</body>

</html>

http://www.asp.net.by/Projects/1/1.1.querySelector.htm

www.asp.net.by/Projects/1/1.2.querySelector.htm

<!DOCTYPE html>
<html lang="en">
<head>
<title>Count</title>
<script>
let counter = 0;
function count () {
heading= document.querySelector ('hl');
counter++;
heading.innerHTML = counter;

}
</script>
</head>
<body>
<hl>Hello!</h1l>
<button onclick="count () ">Count</button>

</body>
</html>

http://www.asp.net.by/Projects/1/1.2.querySelector.htm

The same construction using the getElementByld() directive

<IDOCTYPE html>
<html lang="en">
<head>
<title>Count</title>
<script>
let counter = 0;

function count() {
counter++;
document.getElementByld(‘*h1_1').innerHTML =
counter;
}
</script>
</head>
<body>
<h1 id="h1_1">Hello!</h1>
<button onclick="count()">Count</button>
</body>
</html>

