
YAROSHEVICH
Andrey Olegovich

www.YAROSHEVICH.com
ao@asp.net.by
+375 29 254-07-92

ES6 OOP

http://www.yaroshevich.com/

https://www.youtube.com/watch?v=lp-EO5I60KA

https://youtu.be/VZtXKJU7E9s?t=3516

This is how Heidegger
read his lectures –
here is a fragment

Thinks out loud

And Prof. Mc. Key from
Cambridge too

https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6

https://www.youtube.com/watch?v=lp-EO5I60KA
https://youtu.be/VZtXKJU7E9s?t=3516
https://www.youtube.com/watch?v=BCiZc0n6COY&list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6

Old teaching method

It must be said that it was effective, children showed good results, but its
disadvantages outweighed its benefits, because corporal punishment
humiliates human dignity, so by the middle of the 20th century it was
completely abandoned.

OOP in Ecma6 (JavaScript)
Javascript › 1995: “Mocha” project at Netscape

On March 24, 2014, Mozilla made
the decision to appoint Eich as
CEO of Mozilla Corporation.
After 11 days as CEO, Eich
resigned on April 3, 2014, and left
Mozilla over his opposition to
same-sex marriage.

Brendan Eich on Javascript

JS had to “look like Java” only less so, be
Java’s dumb kid brother or boy-hostage
sidekick.

Plus, I had to be done in ten days or
something worse than JS would have
happened.

—Brendan Eich on Javascript

>Javascript takes off, included in Microsoft’s IE

At first it was a simplified version of Java

1996: submitted to Ecma as standard

today

› Java alive and well server-side

› but JS dominates client-side

› making inroads server-side too

(eg, node.js)

syntax

statements like Java

› while, for, if, switch,
try/catch, return, break,
throw

Comments

› use //, avoid /**/

https://www.youtube.com/watch?v=tt1SkTpHUUU

Smalyuk Antonov Fedorovich

Classes

As for
classes, in
Ecma 6 the
syntax has
become very
similar to
Java syntax
(C++ and
C#), which is
good

class ACat {

string name;

public ACat(n){

this.name=n;

}

}

ACat mycat=

new ACat(“Barsik");

Java syntax
JavaScript syntax

Functions
class Cat {

constructor(n) {

this.name = n;

}

Say() {

return "meou";

}

}

var myCat = new Cat("Barsik");

document.getElementById("demo").innerHTML ="My cat says " + myCat.Say()+ " !"

Example
Create a class named “ACat"
which will inherit the methods
from the “APet" class:

Class Inheritance

To create a class inheritance,

use the extends keyword.

A class created with a class

inheritance inherits all the

methods from another class:

Polymorphism

What is Polymorphism?

Polymorphism is one of the core concepts of object-oriented
programming languages
where poly means many and morphism means transforming one form
into another.

Polymorphism in Biology

Bimorphism

Polymorphism
means the same
function with
different signatures
is called many
times.

function
SaturdayRest()
male version

and

female version

Features of Polymorphism:

Programmers can use the same method name repeatedly.

Polymorphism has the effect of reducing the number of
functionalities that can be paired together.

The super task of polymorphism is
to establish joint actions

We create a class
APerson,
which inherits
classes
defining a man and
a woman
AMan and AWomen
respectively.

I have a habit of adding the
letter 'A' - APerson –
to classes
I create myself to remember
that it is my class.

<script>
class APerson {
WashDishes() {
return 'dry and wet';

}
}

class AWomen extends APerson
{
WashDishes() {
return 'wet';

}
}

class AMan extends APerson {
WashDishes() {
return 'dry';

}
}

single= new APerson();
document.write(" "+ single.WashDishes());
//wet & dry

women = new AWomen();
man = new AMan();

var family = [women, man];

for(i=0;i<2;i++)
{
document.write(" "+

family[i].WashDishes());
}

//only wet or dry
</script>

<script>
class APerson {
WashDishes() {

return 'dry and wet';
}

}
class AWomen {
WashDishes() {

return 'wet';
}

}

class AMan {
WashDishes() {

return 'dry';
}

}
women = new AWomen();
man = new AMan();
var family = [women,man];
for(i=0;i<2;i++)
{
document.write(i+". "+

family[i].WashDishes()+"
");
}
</script>

Classes and objects
classes

objects

1. Class is not a real-world entity.

It is just a template

or blueprint

or prototype

from which objects are created.
2. Class does not occupy memory.

1. Object is a real-world entity.
2. The object takes up memory.

Class and Objects
class AWomen {

constructor(name, gender, age, o)
{

this.name=name;
this.gender=gender;
this.age=age;
this.occupation=o;

}
}

jane =
new AWomen("Jane","female",19,"Student");

document.write("Name: "+ jane.name +"
"+
"Gender: "+ jane.gender+"
"+
"Age: "+ jane.age+"
"+
"Gender: "+ jane.occupation+"
");

Die Bremer Stadt Musikanten

Example.

You need to write a
program that simulates the
actions of the Bremen Town
Musicians.
The animals must scare the robbers -
in the
excerpt https://www.youtube.com/
watch?v=8xXiLfSjT9w&t=569s - they
use a clever trick - for example, a cat
shows its face, and the voice is
provided by a dog – “Woof”.

It seems the cat is talking "woof-
woof".

https://www.youtube.com/watch?v=8xXiLfSjT9w&t=569s

The robbers cannot explain what
they saw - because they didn't
graduate from universities, and
think in standards (poorly).

The mystical explanation –

"Evil spirits" –

is the only thing that comes to
their minds.

They run.

The incomprehensible causes horror

The key to success is good interaction

If a cat, a dog, a rooster, a
donkey acted alone (like a
crowd) - they would not have
success.
But the thoughtful joint action
described above brings
success.

Nobody is afraid of a cat and a
rooster

S. Lemm uses this technique
Lemm uses this technique in his novel Solaris.
The appearance of creatures ("guests") of an
incomprehensible nature on a space station
causes great fear. Because the nature of the
creatures - the woman, the little monster - is
incomprehensible: they could be called
phantoms if they were not entirely material.

Still from Tarkovsky's film "Solaris"

In another Lem novel, "The Inquest," corpses
systematically disappear in a morgue in a rural
hospital in the outskirts of London. The
strangest, most inexplicable and terrifying
thing is that a small kitten is always found -
and this kitten is more frightening than the
monster.

The incomprehensible is frightening
So the thoughtful joint action described above
brings success.
The joint action of different objects is implemented
using the mechanism of polymorphism
(not only in programming,
but also in an anthill,
a beehive,
in the army,
at an enterprise).
If a cat, a dog, a rooster, a donkey acted alone (like a
crowd) - they would not have success.
But the thoughtful joint action described above
brings success.

In my opinion,
with the help of
this task you
can feel what
polymorphism
(and function
reloading) is,
and understand
this mechanism
at a deep
(essential)
level.

Let's create classes for a cat and a dog in ES6
(Javascript)

class ACat {

Say() {

return "Miow";

}

}

class ADog {

Say() {

return “Woof";

}

}

let's add a type property that returns the
class type

class ACat {

Say() {

return "Miow";

}

get type(){

return “Cat”;

}

}

class ADog {

Say() {

return “Woof";

}

get type(){

return “Cat”;

}

Let's create classes for a Roster and a Donkey
in ES6 (Javascript)

class ARooster {

Say() {

return

“Cock-a-doodle-do";

}

get type(){

return “Rooster”;

}

}

class ADonkey {

Say() {

return “Hee-haw";

}

get type(){

return “Donkey”;

}

Let's unite animals into one structure

bm=[new ADonkey(), new ADog(), new ACat(), new ARooster];

for(var i=0; i<bm.length; i++)

{

alert(bm[i].type + " says " + bm[i].Say());

}

for(var i=0; i<bremen.length; i++) { alert(bremen[i].cnam + " says " + bremen[i].Say()); }

Each of our animals says what it should say.

But we need them to say other people's lines.

This can be done like this

for(var i=0; i<bm.length; i++)
{
k=i+1;
j=k<bm.length?k:0;
document.write(bm[i].type + " says " + bm[j].Say());

}

class ACat {
Say() {

return "Miow";
}
get type(){

return "Cat";
}

}

class ADog {
Say() {

return "Woof";
}

get type(){
return "Dog";

}
}

class ARooster {
Say() {

return "Cock-a-doodle-do";
}
get type(){

return "Rooster";
}

}

class ADonkey {
Say() {

return "Hee-haw";
}

get type(){
return "Donkey";

}
}

bm=[new ADonkey(), new ADog(), new ACat(), new ARooster()];
for(var i=0; i<bm.length; i++)
{

document.write(bm[i].type + " says " + bm[i].Say()+"
");
}

for(var i=0; i<bm.length; i++)
{

k=i+1;
j=k<bm.length?k:0;
document.write(bm[i].type + " says " +

bm[j].Say()+"
");
}

Donkey says Woof
Dog says Miow
Cat says Cock-a-doodle-do
Rooster says Hee-haw

JS Output
From your JavaScript studies in previous courses, you used the alert()
popup function

for(i=0;i<2;i++){

alert(" "+ family[i].WashDishes());}

The examples in this lecture used the document.write construct to
output text to the end of an HTML page.

for(i=0;i<2;i++){

document.write(" "+ family[i].WashDishes()); }

querySelector

document.querySelector

<!DOCTYPE html>

<html lang="en">

<head>

<title>Count</title>

<script>

let counter = 0;

function count() {

counter++;

document.querySelector('h1').innerHTML = counter;

//alert(counter);

}

</script>

</head>

<body>

<h1>Hello!</h1>

<button onclick="count()">Count</button>

</body>

</html>

www.asp.net.by/Projects/1/1.1.querySelector.htm

http://www.asp.net.by/Projects/1/1.1.querySelector.htm

www.asp.net.by/Projects/1/1.2.querySelector.htm
<!DOCTYPE html>

<html lang="en">

<head>

<title>Count</title>

<script>

let counter = 0;

function count() {

heading= document.querySelector('h1');

counter++;

heading.innerHTML = counter;

}

</script>

</head>

<body>

<h1>Hello!</h1>

<button onclick="count()">Count</button>

</body>
</html>

http://www.asp.net.by/Projects/1/1.2.querySelector.htm

The same construction using the getElementById() directive

<!DOCTYPE html>
<html lang="en">

<head>
<title>Count</title>
<script>

let counter = 0;

function count() {
counter++;

document.getElementById('h1_1').innerHTML =
counter;

}
</script>

</head>
<body>

<h1 id="h1_1">Hello!</h1>
<button onclick="count()">Count</button>

</body>
</html>

